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Abstract—In this paper, some recent works of the authors, in the area of the field-boundary element
method for finite/small strain elastoplasticity [Okada, Rajiyah and Atluri (1988a) J. Appl. Mech.
55, 786794 ; (1988b) Comput. Struct. 30, 275-288 ; (1989) Comput. Mech. 4, 165-175; (1990) In:.
J. Numer. Meth. Engng 29, 15-35), are summarized. Certain new integral representations for
displacement (velocity) gradients, which are derived recently by the authors using the weighted
residual method, are presented. Early formulations for boundary element methods for linear elas-
ticity and small strain elastoplasticity [see Banerjee and Butterfield (1981} Boundary Element
Methods in Engineering Science. McGraw-Hill ; Banerjee and Cathie (1980) Int. J. Mech. Sci. 22,
233-245; Banerjee and Raveendra (1986) Int. J. Numer. Meth. Engng 23, 985-1002; (1987) J.
Engng Mech. 113, 252--265 ; Brebbia (1978) The Boundary Element Method in Engineering. Pentech
Press; Chandra and Mukherjee (1983) J. Srrain Anal. 18, 261-270; Cruse (1969} Int. J. Solids
Structures 5, 12591274 ; Mukherjee and Chandra (1987) Boundary Element Methods in Mechanics,
Elsevier Science Publishers; Mukherjee and Kumar (1978) ASME J. Appl. Mech. 45, 785-790;
Rizzo (1967) Q. Appl. Math. 25, 83-95; Swedlow and Cruse (1971) Int. J. Solids Structures 7,
1673-1683] are also shown along with these new integral equation representations. These new
integral representations have lower order singularities, as compared to those that are obtained by
a direct differentiation of the integral representations for displacement (velocity). They are quite
attractive from a numerical analysis point of view, and enable the evaluation of the gradients at the
boundary of the body, without any difficulties of hyper-singularities as in the conventional approach.
In this new approach, the integrals, which have the highest order of the singularity, are evaluated
in the sense of Cauchy principal value. Stresses and strains can be obtained directly at the boundary,
using these new integral representations, whereas alternate methods or special regularization tech-
niquest are required when the conventional type integral equation for the gradients is used. These
new integral equations can unify the methods of obtaining stresses as well as strains at the interior
and at the boundary of the body. As shown in this article, this is very advantageous in applications
to small and finite strain elastoplasticity. The third topic in this paper is a new field-boundary
element method for the analysis of a class of problems of finite strain elastoplasticity, that involve
bifurcation phenomena in the solution path, such as the buckling of a beam-column, diffused
necking of a tensile bar, etc. The field-boundary element method is especially advantageous in the
application to the large strain elastoplasticity, since the formulation can cope with the in-
compressibility of the material in the regime of fully developed plastic flow. This is not true in the
case of the finite element displacement method. A full tangent stiffness method has been proposed
by the authors to solve such classes of problems. This formulation accounts for all the non-linearities
in the problem, and allows for the calculation of the displacement field directly. The problem of
diffused necking of a tensile plate is solved for illustrative purposes. It is clearly seen that the full
tangent stiffness field-boundary element method is capable not only of capturing the diffused necking
bifurcation but also of analysing the post bifurcation diffused necking solution.

1. NONHYPER-SINGULAR INTEGRAL REPRESENTATIONS FOR VELOCITY
(DISPLACEMENT) GRADIENTS IN ELASTIC-PLASTIC SOLIDS (SMALL OR FINITE
DEFORMATIONS)

Integral representations for displacement (velocity) gradients in elastic or elastic-plastic
solids undergoing small or large deformations are presented. Compared to the cases wherein
direct differentiation of the integral representations for displacements (or velocities) were
carried out to obtain velocity gradients, the present integral representations have lower
order singularities which are quite tractable from a numerical evaluation point of view.
Moreover, the present representations allow the source point to be taken, in the limit, to

1 See Krishnasamy et al. (1991), for the regularization techniques in the hyper-singular integral equations.
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the boundary, without any difficulties. This obviates the need for a two tier system of
evaluation of deformation gradients in the interior of the domain, and at the boundary of
the domain. It is expected that the present formulations would yield more accurate and
stable deformation gradients in problems dominated by geometric and material non-
linearities. This section deals with velocity gradient representations for four different cases
of practical interest: (i) infinitesimal deformation of a linear elastic solid ; (ii) small strain
clastoplastic behavior; (iii) finite strain elastoplastic behavior; (iv) large deformation
behavior of a semi-linear elastic solid, involving a linear relation between the second Piola—
Kirchhoff stress and the Green-Lagrange strain. In case (iii}, an updated Lagrangian
formulation is used, whereas, in case (iv), a total Lagrangian approach is used.

All the singular integral representations described in this section are evaluated in the
sense of Cauchy principal values. Hence, residual or jump terms arise out of these singular
integrals. The jump terms, which arise from some generic terms which appear in the integral
equations for velocity gradients, are discussed in the context of finite strain elastoplasticity.
Numerical examples are provided for the problems of small and finite strain elastoplasticity,
along with the detailed schemes for the evaluation of singular integrals and for the incremen-
tal calculation of elastoplasticity. It is demonstrated that the BEM formulation with the
nonhyper-singular integral equation tends to give a superior numerical reliability in the
calculations of finite and small strain elastoplasticity.

1.1. Infinitesimal deformation of a linear elastic solid
Let o,; be the Cartesian components of the Cauchy stress tensor, and let f; be the body
force per unit volume. The equations of linear and angular momentum balance are:

0 +fi=0, e))
Oij = Tjis (2

where () denotes differentiation with respect to material coordinates x;. For a linear
elastic isotropic solid, the stress—strain relations are:

6;; = Ejutu, (3)
Eijmn = iéij(smn"*‘ju(éiméjn+5in5jm)s (4)

where, A and u are Lamé constants and J;; the Kronecker delta. The strain-displacement
relations are

& = Htt s +140)- (5)
The boundary tractions, are given by :
t; = noy, (6)
where n; are components of a unit outward normal to the boundary dQ.

Let u, be the trial functions for displacements, and let & be the test functions. The
weak-forms of the equilibrium equation (1), can be written as:

j (Uji.j +f)i; dQ = 0, (7
Q

where ¢;; are assumed to be written as functions of u; through eqns (3) and (4).
We assume that the test functions @; are the fundamental solutions, in infinite space,

to the Navier equations, i.e.

[Eijurtte ]+ 0(Xm —Em)d e, = 0, (8)



Finite/small strain elastoplasticity 1739

where e, denotes the direction of the unit load at x,, = £,. We assume that the solid is
isotropic, in which case the solution #; for (8) is readily available. Thus,

i, = uhe, (nosum forp) )]

and
t tpep =n Eljkl(ukp 1) (10)

Here, u¥, is the jth component of displacement at location x,, due to a unit load along the
pthdirection at the location &,,. Likewise, 7, is the jth component of traction on an oriented
surface at x,, due to a unit load along the pth direction at £,,. By using the divergence
theorem twice on eqn (7), and substituting eqn (8) in the resulting equation, one obtains
the integral equation :

Up(Em) =f [ )ty Xms Ein) — 14 (X T (X, ém)]d59+ij(xm)u,’~',‘,(xm, $m)dQ. (11)

By taking the point &, in the limit, to the boundary, one may obtain the well-known
boundary integral equations for u,. It is also well-known, that the singular kernels «}, and
t}, remain integrable in the limit when £, tends to the boundary. By a direct differentiation
of eqn (11) with respect to &,,, one may obtain :

> 2m ot} ms Sm
Upi(Em) = J; |:l( m)L(xé’":Q ](xm)tj_p(gzké_)]dag

+| g B0t ag

In the limit as £,, —» 0Q, the kernel 0t},/0&, becomes hyper-singular, and becomes numerically
intractable. It is with the aim of circumventing these difficulties, that the present alternate
types of integral representation for displacement gradients are directly developed.

Instead of writing the weak-form of the linear momentum balance relations in a single
scalar-form as in eqn (7), we write the weak-forms of the linear momentum balance relation
in a three component vector form, as:

J‘ (aut+f) de 0 (13)

In eqn (13), ( ), implies J( )/0x;. Assuming that the linear elastic solid is homogeneous, we
rewrite (13) as:

J [Eijmnum,ni_{_f}]ﬁj.k dQ = 0 (14)
Q

Integrating eqn (14) by parts, applying the divergence theorem three times, and making use
of eqn (6), one obtains:

LQ (478 + Lyt i ~ Bt ot 1) d 69+L Tt dQ+L St dQ = 0. (15)

Here

= = (Ejuite)), (16)
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and

Ly = E;jpuntl; i, (17

Upon taking # and 7; to be as in eqns (8, 9 and 10), one obtains the integral relation :

Cup.k(fm) = J;Q (n/\‘Eijmnum,nuj*p,i - tjuja;),k - t:lpum,k) d 69 “L ./j"u},‘;.k dqQ. (]8)

Inegn (18), ( ), = ( )/éx;, and C = 1 when £,€Q, and C = 1/2 at a smooth part of the
boundary. As compared to eqn (12) wherein the kernel 0¢},/6¢, is involved in the boundary
integral, in the presently derived eqn (18), only the kernels u%, ; and #%, are involved at Q.
Note that the orders of singularity in «%,; and #%,, which are equal, are nevertheless smaller
than that in 81%/8¢,. The singularities in the integrals in eqn (18) are in general tractable,
and the integrals in eqn (18) can be evaluated by the method suggested by Guiggiani and
Casalini (1987) for two-dimensional case, by Guiggiani and Gigante (1990) for three-
dimensional case, or by an alternate method described in this paper. It is noted here that
some regularization techniques have also been developed for the integral involving 0t%,/0&,
type kernels. A comprehensive review of such regularization techniques is given in Krish-
nasamy et al. (1991). Once the tractions ¢; at the boundary are completely known [for
example, using the displacement boundary integral equation (11)], the displacement gradi-
ents u;; can be determined from eqn (18) (which would then become an integral equation
involving u,, alone) in the interior Q as well as at 6Q. We note also that by starting out

with weak-forms of the linear momentum balance relations in the form:

J (ij,,‘ ‘f‘j;)l},;d dQ = 0, (19)
0

one may obtain, for homogeneous elastic solids, an integral relation for u,, in the form:

= ¢ * x
Cﬁp,k? (ém) - J ( —H Ez’jmnum.nu}'p.ki + nnEijmnumJujp.ki
20

+agu, 1 0(x, — &) F ) d 6Q+L fiuk udQ. (20)

Here, &,, is the source point and x,, is the field point. Equations of the type of eqn (20) may
be useful in plate-bending analysis, wherein the second derivative of transverse displacement
w corresponds to a bending moment. Integral relations for the third and higher order
derivatives of w; may similarly be derived.

1.2. Small strain elastoplasticity

Here, we treat the rate problem. Let », be the velocities of the material particle, and in
the considered small strain problem, é; be the strain-rate, and x; the material coordinates.
The rate problem is posed by :

G+ =0, @n
6, = 6, (22)

6, = Efji(6n —E0)s (23)
&y = i+, (24)

i = nd, (25)
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We assume that an appropriate plasticity theory is used {see Watanabe and Atluri (1986a)
for a fairly general internal variable theory for small strain plasticity theory] such that the
evolution equation for £/ is specified in the form:

éf; =f;}(0‘;f, 3“,-]-,..‘). (26)
Assuming that the plastic flow is deviatoric, the functions f;; have for their arguments: (i)
the deviator of the current stress, o7, ; (ii) an internal variable such as the back-stress r;; in

a kinematic hardening plasticity theory, etc.
The weak-forms of eqn (21) would now be written as:

f (G404 f)5;dQ = 0, @n
Q

J; (63.:+/)5,4dQ = 0. (28)

Again assuming that the solid is elastically homogeneous (i.e. Ef;, is independent of
location), we write (27} and (28) as:

J‘ [Efjmn (Um,m' “ér[:m,i)]ﬁj dQ = O’ (29)
Q

J [Efjmn(vm,ni”érﬁn.i)]ﬁj,k dQ = 0. (30)
Q

Now we take 7, to be the fundamental solutions of the equations:
(Efi®in) i+ (X —Em)djpe, = 0. (31)

Repeating the algebraic manipulations in eqns (15-17) which led to eqn (18), we obtain
integral equations for v; and v, :

Co,(én) = j (fo%—0v,1%)d 80 +j (fiv%) dQ+f (E et} dQ, (32)
a0 Q o

Cvp,k(fm) = Lﬂ (nkEgjmnvm,av;),i - ijv;’;),k - tr?zpum‘k) d 6Q _L (f]vj’;k) dQ
_'J‘ (Egmnétinvﬁ,ik) dQ. (33)
Q

It will be shown that the singularities in the kernel v}, ; in the domain integral in eqn (33)
are tractable, when £, €Q or smooth éQ.

1.3. Finite strain elastoplasticity

Here we use an updated Lagrangian formulation. Let x, be the spatial coordinates of
a material particle in the current configuration. Let S’,-j be the Truesdell stress-rate (the rate
of second Piola-Kirchhoff stress as referred to the current configuration) ; and let ¢} be
the Jaumann rate of Kirchhoff stress (which is J times the Cauchy stress, where J is the
ratio of volumes). It is known [see Atluri (1980)]:

Sij =6} ~Dyoy;— oy Dy, (39)
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where D,; is the symmetric part of the velocity gradient, i.e.
Dy; = 3(vi;+v;), (35)

wherein v, are velocities, and ( ), = d( )/dx;. The skew-symmetric part of v; ; is denoted as
Wi, 1e.

ijs

Wij = %(vi.j_uj,i)- (36)
The rate forms of the linear and angular momentum balances are [see, Atluri (1980)]:

(Sij +1-'ikvj.k),t+fj =0 (37
and

S, =S5 (38)

where, in a dynamic problem, f; are appropriately defined in terms of the rate of change of
inertia forces and ( ) ; = 8( )/0x;; x; are current coordinates of a material particle. In eqn
(37), 7;; is the Cauchy stress in the current configuration. Consistent theories of combined
isotropic/kinematic hardening finite strain plasticity that are capable of modeling the avail-
able test data (at finite strain) are fully discussed in Im and Atluri (1987a, 1987b). Especially,
in the case of kinematic hardening plasticity at finite strains, it is desirable [see Im and
Atluri (1987a), and the references cited therein] to introduce the so-called plastic spin,
denoted by W7%,. As seenin Im and Atluri (1987a) a combined isotropic/kinematic hardening
plasticity may be characterized by the following evolution equations :

D% = fi(ei;, Dy, Wh,..) (39)
Wt =g, ry,...) (40)
F = hii (D%, Wh, .. 41
and
61 = ky (D%, W, ...). (42)

Here, r;; is the back-stress; 7}, the Jaumann rate of the back-stress; DY, the plastic part of
the velocity strain D;;; and ¢7; is the deviator of the Kirchhoff stress.

Integral representations for the combined isotropic/kinematic hardening plasticity
theories of the above type have been discussed in Im and Atluri (1987b). It is noted here
that r;; = 0; W?, = 0 in the case of isotropic hardening. The evolution equations for ¢, is
given by:

d’fjj =g Wi +ouWi; = Efj (D~ Diy) — Wioy; + oy Wi, (43)

ij

We restrict our attention to the case of elastically-isotropic and elastically-homogeneous
solids. Thus, Efj, is given by eqn (4), with 4 and u being independent of x,,. The weak-
forms of eqn (37) are written as:

J ((Si; + Timlym) ; + £715, dQ = 0, (44)
Q

f [(Sij+TimUj,m),i+fj]5j,k dQ = 0. (45)
Q
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The rate of tractions ¢, are defined as:
t; = n(Si; + Timljm)s (46)
where n; are components of a unit outward normal to the boundary of the solid in its current

configuration. Integrating eqn (44) by parts, applying the divergence theorem twice and
making use of eqn (43), we obtain:

“J‘ (t:jﬁjl"“vj;jl) dQ+J~ (E?jmnﬁj,i),nvm dQ
o0 Q
+j [EfimnD b — (Wi — W s+ Ton (W — W) + 0T 105, dQ‘*‘J\ fﬂ;; dQ=0. (47
Q I

Likewise integrating eqn (45) by parts, applying the divergence theorem three times, we
obtain:

J (t:iﬁj.k + ;.mvm,k _nkE?jmnﬁj,i) d aQ '—J~ (Efjmnﬁj.i),nvm,k dQ
a0 Q
+ J [Efjmnmen - ( I/VIm . me)rmj + rim(ij - W’r’nj) + vi,mrm_i]ﬁj.ik dQ + J‘ .i}ﬁj,k dQ =0. (48)
Q Q

In eqns (47) and (48), {, is defined as in (46), while,
tr = Py E a5 (49)
We assume 7, to be the fundamental solution of the equation
(E S mnlmn) i+ 0(xm —Em)djer = 0, (50)
wherein ( ), = 0( )/0x;; x; are the current coordinates of a material particle. Let v} be the
solution to the displacement in an infinite linear elastic solid along the ith direction at

location x,, due to a unit load along the /th direction at the location £, in the current
configuration. Using eqn (50) in eqns (47) and (48), we obtain the integral representations :

Co, (&) = L) (toh—v,t%) d Q2

+J [E;’jmnD‘r';m - ( VV:m - Wzl:n)’cm/ + Tim( ij - Wgzj) + Ui,mrmj]vj*;),i dQ +J .f}v],'; dQ (51)
Q Q
and

&

Cvp.f((ém) = J;Q (nkEz(gnnvm,nvfa.i - tjv}';,k - t:pvm,k) d 69
3

- L LE jmn D tn = (Wi = W) Ty + Tim (W = WE) + 0 T 10 deL fivhedQ, (52)

where ( ), in eqn (52) denotes d( )/dx,, x, the current coordinates of a material particle,

and C = 1in (, and C = 1/2 at a smooth boundary. The kernels v}, ; and #%, have the same

order of singularity, and these singularities are tractable in the boundary integral, as &,

tends to the boundary. The singularities in the kernel v, , in the domain integral are also

tractable, when £, lies inside Q or at smooth #Q. Further insight will be provided in this
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article. on the implementation of eqn (52). On the other hand, 1, at 8Q may be solved from
the usual integral representation for ¢, (51). Once 1, at éQ are solved for, eqn (52) may be
viewed as an integral equation for v, alone. From a numerical view point, it is clear that
the integral equation for ¢, alone involves velocity gradients as unknowns in the domain.
Thus, an iterative algorithm is imperative for the complete evaluation of velocities and
velocity gradients inside Q as well as at JQ.

1.4. Geometrically non-linear behavior of a semi-linear solid

We use a total Lagrangian description of motion [see Atluri (1980)] for details. Let X,
and x,, respectively, be the coordinates of a material particle, before and after the finite
deformation of the solid, in a fixed Cartesian frame. Let the second Piola—Kirchhoff stress
tensor, and the Green-Lagrange strain tensor, referred to the undeformed configuration,
be S5 and g, respectively. We consider the material to be semi-linear and isotropic, such
that:

Sus = Eqpcogcns (53)
and

E s = 464800+ (0 40050 + 6 4p05c). (54)
Let u, be the displacements of a material particle, such that:

Xq= Xytuy, (55)
whereupon,

Gan = 2(Uap+up 4+ U, 4l 5)s (56)

where ( ), = é&( )/éX,. Use of eqn (56) in eqn (53) leads to:
St = Eascolic.p+ 1E48c0Um clém.p- (57

The equations of linear and angular momentum balance are:

(SAEF,B),A +fi =0 (58)
and

Sip = Saa (59)

where F;; = 0x;/0Xgand f;are body forces per unit initial volume. The traction components
in the deformed solid are represented as:

t; =n,S,pFs, (60)
where n, are the components of a unit outward normal to the boundary in the initial
configuration. Note that ¢, are measured per unit area at the boundary of the undeformed

solid. Let Q and Q, refer to the final and initial configurations of the solid.
If the weak-forms of eqn (58) are written as:

J; {(SABI:I'B).A +f;}‘21 dQu = 0’ (6])

then integrating eqn (61) by parts, applying the divergence theorem, and choosing the test
functions i, to be the fundamental solutions of the following equations:

0:8(E 4scplic.p) a4 +0:.0(Xy—Cule, =0, (62)
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i.e. choosing #; to be the fundamental solutions to the Navier equations of linear elasticity
written in the coordinates of the undeformed solid, one can deduce from (55) that:

Cup = f (tiufe — thru,)d 0Q, “"‘L 3E 43cpbm, ctim piihp 4 4 0Q,
o0,

o

- j S 4pt; gt 4 dQ, +] fu%dQ,, (63)
a, Q,

where C = 1in§Q,and C = 1/2atasmooth 0Q,. Ineqn (63) ( ), = 8( )/0X,. The quantities
u, and ¢; are assumed to be specified over a part of 0Q,, and are direct unknowns over the
remainder of 6Q,. Equations of the type of (63) were used in O'Donoghue and Atluri (1987)
and Zhang and Atluri (1986) in solving problems posed by the Von Karman type non-
linear theories of plates and shallow shells, by integral methods. Instead of (61), the weak-
forms of eqn (58) may be written as:

J; {(S4aFip) 4+ f}15,pdQ, =0, (64)

where ( ) , = 0( )/0X,. Integrating (58) by parts, applying the divergence theorem thrice,
and making use of eqns (57) and (60), we have:

J. (434, p + tagttyy p —1p E yppanttyg nitp, 4) d 0Q, “J (E4pmniip 4) vt p dQ,
o, Q,

“’“L %EABMN"‘{(.M“I(‘NEB,AD dQ, ‘“L S.antt; 54 4p dQ, + L fzﬁf,b dQ, = 0. (65)

In eqn (65), ( ) p = 0( }/0X, and 7\, are tractions of a pseudo-linear solid :
ZM = nyE spntip 4- (66)

If 715 in eqn (65) is taken to the fundamental solution as in eqn (62), we may write :

Up 4= u;L,AeLa (67)
Ty = the, (68)

and
Uap = u:'kL-,ADeb (69)

Using eqns (67-69) in eqn (65), one obtains :
Cupp = J;Q (Mo E spuntis nyBp 4 — Liths p— thpttyp) d 0Q, +J (%)EABMNuk,Muk.Nuﬁp,AD dQ,
0 nD

+J Szt sule 4p A, —J‘ SJuk pdQ,. (70)
o, n,

Here C=1inQ,, and C = 1/2 at a smooth dQ; and ( ), = ( )/0X,. The tractions ¢, are
presumed to be given over a part of 6Q, and are direct unknowns over the remainder of
Q..

At the boundary 9Q,, eqn (70) involves the kernels u%, , and ¥, which have the same
order of singularity, and are quite tractable numerically. Likewise, the domain integrals
involve the singular kernels u}, 45, which again, are tractable numerically. Alternatively,
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eqns (63) and (70) may together be used, iteratively, to determine up and u, , at 8Q, as well
as in Q,. Thus, for instance, the unknown ¢; at 6Q), are presumed to be solved from eqn
(63), and when these are used in egn (70), it would then become an integral equation for

Up p-

1.5. Evaluation of free terms in the integral representation of velocity gradients

We consider the case of a finitely deformed elastic—plastic solid undergoing isotropic
hardening (i.e. W/ = 0) as a generic case. The following arguments apply equally well for
two- and three-dimensional problems.

First consider the case when the source point £ is inside Q, in the current configuration
of the finitely deformed solid, when an updated Lagrangian approach is used. Integrating
eqn {45) by parts, and applying the divergence theorem once to the region free from
singularities, i.e. Q—e¢ in Fig. 1, we have:

J z:jﬁj.!t d aQ “J‘ E?jmn%n.nﬁi,ik dQ_J‘ ( - E?jmnDr’;&n + Wimej
fil¢] Q-¢ Q -z

- ijrim - vi.mrmj)ﬁj.ik dQ+ j j;‘ﬁj,k dQ+J ni(Sij + Tiij-’”)ﬁj~k dde
Q¢ o¢

+f Fivx d9+j IS + Timliml 54 dQ2 =0, (71)

where i, is defined in eqn (46), and ( ), = d( )/0x,. Integrating (71) by parts, and applying
the divergence theorem two more times, and considering that 7, are fundamental solutions
to eqn (50), one obtains:

. *
j’ (zju?;?,k + z:[r"apz)tn,k - nkEié‘timnvm.nvjp.i) d aﬁ
aQ

m

+ (Efjmanm - Wimej + Tim ij + vLmej)U};).ik dQ
Q

0y

+1 fivh« dQ+8——-+Lt 0 {J’ thoUmy d 08
Q dg

n
3 3 *
- nrf(Eijmanm - Wim’rmj + Tim Wmi +vi.mrmj)vjp.k d 68

o0

~

+ j;’vj;,k dS—%—J (Sij +Tim0j,m).iv}§;.k da} =0. (72)

o

We now consider the limiting terms in eqn (72), one by one. First,

N . L
g0 f (i + Timtym) U e = [(Sf,»+rf,,.v,,m),i1pa—‘—>0f o de, (73)

where P is the source point  in Q. Due to the inherent property of v, , kernel in the Kelvin’s
solution, it can be seen that:

e—250 j v% e = 0. (74)

&
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P p Source point § in 02
P: Source point Sm a ¢: Small region near P
€: Small region near P
de: Boundary of ¢
d¢: Boundary of &
Case | Case 11

Fig. 1. Evaluation of singular integrals in a sense of Cauchy principal value.
Similarly, it is seen that:
e—2L0 J fv% . de =0. (75)
We now consider the limiting term:

Lt
& >0 J; [t;pvm,k - nf(Ei)mnDrpnn - l/VimTrnj + Tim ij + vi,mfmj)vﬁ,,k] doe = Up i
&

O¢

— [EfjmnDﬁm — W,‘mej + Tim ij +U,"mej]_p & —l—l!—) Of nf v;"‘p,k d 68. (76)
It can be shown that:

—1
e—50 L nivk d os = G {9001+ 3480 — (7-80)6u3,]

16(1—v

for two-dimensional plane strain
-1

= ma— {5,7,5/”' + (S,-jékp — (9 — 30v)6ik5pj}

for three-dimensional problem, an

where G is the shear modulus. Hence, the integral representation for v, , (= dv,/0x;) at the
source point P (= ¢£) inside Q can be written, using (74), (75), (76) and (77) in eqn (72), as:

Co,.(D) = L o e E il i = L0y~ o) doQ
_L (E?jmanm - I/V'im”:mj +Tim ij +vi,mtmj)vj,';7,ik dQ

- L _fjvjp,k dQ+ [E?jmnDl’:m - pVimej + Tim ij + Ui,mej] PEjpk; (78)
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where [ ], refers to the quantity [ ] evaluated at the source point P (= &) in , and Fj;,,
refers to the free terms given in eqn (77), and C = 1.

When the source point P (= ¢) is taken in the limit to a smooth dQ, a similar analysis
as described in eqns (72)—(77) may be carried out. The resulting expression for v,, at
£ esmooth 0Q will be similar to that in eqn (78), except that C = (1/2); and F;,,, should
be replaced by (F};,4/2).

1.6. Numerical analysis: small and finite strain elastoplasticity using the nonhyper-singular
integral equations for velocity gradients

The analyses of small and finite strain elastoplasticity are presented, along with the
detailed numerical implementations for the numerical evaluations of singular integrals. The
numerical implementations have been discussed in Lachat and Watson (1976), and Banerjee
and Raveendra (1986). An elastoplastic constitutive equation, that is employed in the present
analysis, is described. The methods of updating the stresses in the finite strain elastoplastic
analysis, using an objective stress integration scheme and the mid-point radial return
algorithm, are presented. The numerical results demonstrate that the use of the nonhyper-
singular integral equation leads to a superior numerical accuracy.

1.6.1. Elastic-plastic constitutive equation. Here, we consider a general type of elastic—
plastic constitutive model, which includes the isotropic, the kinematic and the combined
isotropic/kinematic hardening behavior of the solid at large strains. It has been pointed out
by several authors [see Atluri (1984), Lee et al. (1983), Reed and Atluri (1985)] that in a
kinematic hardening large strain plasticity model, if the evolution equations for the Jaumann
rates of the Kirchhoff stress and of the back-stress, respectively, are simply taken to
be linear functions of the plastic component of the velocity strain, certain anomalous
consequences, such as an oscillatory stress response of the material in finite simple shear,
may result. More general evolution equations, especially to account for the noncoaxiality
of the Cauchy stress and the Cauchy-like back-stress in shear and nonproportional loadings,
have been attempted by Atluri (1984) and by Reed and Atluri (1983) to suppress the above
physically unacceptable oscillatory stress responses. Although these methods based on
formal continuum mechanics were quite successful for the simple shear case, the physics
and micromechanics of finite plastic flow indicate that a more consistent large strain
elastoplastic constitutive law should involve an evolution equation for the plastic component
of the spin tensor. Such an elastic-plastic constitutive model has been developed, for
instance, in Im and Atluri (1987a,b), which is the finite strain version of the endochronic
constitutive model of Watanabe and Atluri (1986a,b). Here, the concept of a material
director triad is introduced and the relaxed intermediate configuration is chosen to be
isoclinic. The plastic spin tensor is defined through internal time. Such an endochronic
constitutive model (for large strain elastoplasticity) employed here, can be summarized as
follows.

Let N, be the normal to the yield surface in the deviatoric Kirchhoff stress space.
When the stress is on the yield surface and N,;D;; > 0, the process is a plastic process.

Ny = @ =r) =l ™
{ = D;N,/C, (80)
D% = Nyt @81)
W,-[; = QijC’ (82)
my Tl —Tariy) | Ma(fartl = Taluly) M3 (Tt — Tfkfl/d"f')}
. ’ . (83
’ { 200 T ar0 TR0 *

(wi=r) (T —ry) = 1. (), (84)
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1 = A(Du)dy +2u(Dy; — D) — Why, + Wi, (85)

?‘ru(D Dkl)![2
A

where, r;; is the back-stress and 7}, is the deviatoric part of Kirchhoff stress 7;;. f({) and r;;
represent the expansion and translation of von Mises type yield surface. D} and W/, are
the rate of plastic strain and the plastic spin, respectively. { represents the internal time
variable. It is seen that §,, accounts for the noncoaxiality of the tensors 7j; and r;;. The
reader is referred to Im and Atluri (1986a,b) for further details of the constitutive model.

rl.; ::ZﬂplDS Wkrkj+rllefj9 (86)

1.6.2. The BEM formulation. As described earlier, the integral representation for the
velocity in the case of finite strain elastoplasticity can be written as,

Cpqvq(ém) = ﬁﬂ (t‘jvj*p p) d aQ"‘[ {EumnDPmn - (erm - W:l‘;n)rmj

A+ T Wy = WE) + 0y T J0%  dQ + f frrdQ. (87

Here C;; = §; in the interior and 3J,; at a smooth boundary point. The above equation,
when dlscretxzed and applied at the boundary, results in the standard boundary element
system of equations:

Hv = Gt+Qg, (88)

where v, t and g are the velocities and the traction rates at the boundary, and the velocity
gradients in the interior, respectively ; and H, G and Q are the associated matrices.

The standard BEM formulation makes use of eqn (87), and obtains the strain field by
differentiating it with respect to the load point &,. Thus,

0 sbm ot mr &om
vp,k(‘fm) =J:3Q [_v%é—')‘ j( m)— Mvj(xm):[d(ag)

5 %
.[ {E’Jmanm (pV"" W””)T"U +tlm(Wm1 ij) +uv; mej} U)p d dQ

+ {El}mn - ;’V;,,,ij +Tim ij + vi.mtmj] FEjpk
ov’
Jﬁ > dQ. (89)

F,;i, is defined as shown in eqns (77) and (78).

This method gives rise to 0t}5/¢, type kernels, which are hyper-singular, when &,, tends
to a boundary point. Hence, this predicament gives rise to a two tier system of evaluation
for the stress field.

The following direct integral equation (in the absence of body forces) for the velocity
gradients has been obtained earlier in this paper.

Cvp k(ém) J\ (nkE:jmn mon jp i tj ‘ipk T vm,k) d 69

P

- {Eumanzn ( im Wgn)‘tmj + 7f'im(mej - Wg:;) + vi,mrmj}vﬁz,ik dQ

J&

+ [ElejmﬂDﬂm W T”U + Tim ij + Ui.mej]PEjpk

r~

= | Sk (90)

SAS 31:12/13-1
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Here, C = 1 in the interior and ] at a smooth boundary point. The kernels ul, . and ¢} have
the same order of singularity and in general are tractable from a numerical point of view.
Note also that as x,, tends to 9Q, the singularities in the new representation, eqn (90) are
of lower order as compared to those in eqn (89). Equation (90), when discretized and

applied at the boundary, results in the following system of equations :
Hyv, = Gt+Qug (o1)

where v,, t are, respectively, the velocity gradients and tractions at the boundary, g is the
velocity gradient in the interior and H,, G, and Q, are the associated matrices. It is
interesting to note that the order of singularity in H, and G, terms is the same as that of
the terms in H in eqn (88).

The unknown boundary velocities and traction rates could be obtained from eqn (88)
as in the standard BEM approach. Once the complete velocities and traction rate field are
completely ascertained on the boundary, eqn (91) could be used to solve for the boundary
velocity gradients. Finally, the velocity gradients could be evaluated pointwise, in the
interior, [using eqn (90)], once the velocity gradients at the boundary are known. Hence
the stress field could be determined by the elastoplastic constitutive equation in a uniform
manner. The velocity gradients in the standard formulation are obtained by direct differ-
entiation of the velocity integral equation (89). The resulting equation gives rise to hyper-
singularities as the source point is taken to the boundary. Hence the velocity gradients on
the boundary are obtained by numerically differentiating the velocities at the boundary. An
initial strain type iterative method is employed in the calculation of elastoplasticity. As for
the present method the integral equation for the velocity gradients does not involve hyper-
singularities [eqn (90)] and hence is applicable when the source point is in the interior as
well as on the boundary.

Once the D;; is computed, the objective stress-rate ¢/} is computed using a generalized
mid-point algorithm and an objective time integration scheme. The details of both algo-
rithms are described in Im and Atluri (1987b), Atluri (1985), Rubinstein and Atluri (1983),
and Reed and Atluri (1983). The computational algorithms are briefly described here. These
algorithms are quite effective to obtain an accurate solution in computational elastic—plastic
analysis especially for the finite strain case.

The mid-point radial return algorithm for determining 7;; (Jaumann rate of Kirchhoff
stress) from D;; (rate of strain) is summarized as follows,

1. Compute D;;.
2. Check if

(@) +2uD, A0z, +2uD, A0} Z RE, 92)
where R, is the current radius of the yield cylinder, and At is the time increment.

If > R}, then the process is plastic. Go to step 3.
3. Define a generalized mid-point normal to the yield solution

(t7;+2u0D;At)—r,;
I (th + 200Dy At) —ry |l

N 0ij = (93)

where, 0 < 0 < 1 and 6A¢ shows a time point in the current time step (ty — 15+ Al).
4. Define

.1
&= ¢ (NoyDy).
5. Compute the Jaumann stress rate

1 Ny D
i = 2u[D.,- -G Nam,,DmNe,-,] — QT = T = o4)
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and

ik = (2u+34)Dyy.

6. Compute the rate of back-stress

NOlekl NanDmn

i = 2u PC_:; (Nowt D) Noij —ari; C, (Eury —rikdy) Co 9

The objective stress integration scheme, for the finite strain case, to determine the
material stress increment from the Jaumann stress-rate evaluated through the mid-point
radial return algorithm is summarized as follows. Let Q;;(?) be the rotation of the material
particle with respect to the reference time ¢,, which is the beginning of the current time
step. The Kirchhoff stress t;; at the time ¢y + At can be given by the objective stress integral,

T, (tn+ A1) = Tty +ADQu(tn + ADT(t) O,y (2 + Al)

+j JHE)  Quilt+ AN Qi (8)67n (E) Qi (O Qi (tn + AN dE,  (96)

where, ¢, is the Jaumann rate of Cauchy stress. The above expression is approximated for
the finite time step 7y — ty+ At as,

T,(ty+AD) = Tty +ADQu(tn + AT (13) Qi (tn + AD)
+J 7ty + 1AD Qui(ty + A Qim(ty + A G (1 + 3AD Oty + A0 Q1 (tx + AD AL (97)

Here, Q,;(tv+6A1) (0 < 0 < 1) is derived by,

sin (whA?) {1—cos (w0A?)}
A —

Qij(ty+0A) =6+ — —— W, + WiWy), 98)

where,

— 1
w=iW,W,.

1.6.3. Regularization of boundary integrals. As seen from eqn (90), the boundary
integrals in the velocity gradient expression involve Cauchy principal value integrals. Hence
proper care needs to be exercised in evaluating these. As in Fig. 2, BOC is the boundary
segment where the source point O lies and let P be the field point. The straight line EOD
is a tangent to the curve BOC at O and let EC and BD be perpendiculars to the line EOD.
The points B and C are the ends of the segment under consideration. Let r be the distance
between the source point O and field point P. For illustrative purposes, let us consider the
integral :

I = J 60X )03k (s En) 4 (90). 99)
o

When the traction components ¢, are expressed as nodal tractions multiplied by the associ-
ated shape functions, the resulting singular integral to come out of I, would take the
following generic form :

IZ = J; Naij(xlgl)vjtz,k(xm’ ém)d (aQ)' (100)
Q

Here N, is the shape function associated with point O, and ¢,(x;,) corresponds to the nodal
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;4‘

O; Source point: §
P; Ficld point: X
COB; Boundary

Fig. 2. Numerical implementation of singular boundary integrals.

traction at the source point, i.e. point O. The singular integral 7, can also be written in the
following form

I =1;(x7) J;Q (N, =10}, (X, E) d (OQ) + 7, (x1) .[m sk (Xmy Em) d (O)
= 13+t,-(xf,,)14. (101)

For simplicity, the shape function N, can be taken to be linear. The integral 7, in the above
equation is regular and hence tractable from a numerical point of view. From here onwards,
we will consider only the integral 1, which appears to be singular. As per Fig. 2, the integral
I, would take the following form

I = j vk . dS. (102)
BOC

Due to the inherent property of the v}, , kernel, it could be expressed (for two-dimensional
problems) in the following form

0
Uk = Q f@) = —f(0+n). (103)

Here, r is the distance between the source point and the field point. § is the angle made by
the line connecting the source point and field point with the x-axis. Substituting the
expression for v}, in eqn (103) into eqn (102) we have

"‘=I @dhj {f(e)_f(g) }ds
B BO

oc T r r
ds’

+LC{I@‘@ ds

r r

ds’
ds

}ds+ @d8’+j ZLB)dS’. (104)
DO o T

r

Note here, that the angles a and 8 are constants and 6 varies as the field point moves along
the arc (Fig. 2). The integrals along BO and OC in eqn (104) are regular and hence are
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numerically tractable. Let us define the sum of the integrals over the straight lines DO and
OFE asin I5. Thus

I = f f—(rOQdS’+ 1P 45, (105)

oe T
Evaluating 7, in the sense of Cauchy principal values, we have

Is = lim {[~In{r| f(@)]5° +[n [rlf(B)IF} + CP.V.
= lim {—In ()[f (@) +/(B)]+1n (rz) f(B) +1n (rp) f (@)} + C.P.V. (106)

Here, r; and r,, are distances between the source point and points E and D, respectively.
C.P.V. denotes Cauchy principal value terms which arise out of the integral /. It so happens
that, when eqn (90) is considered as a whole, all Cauchy principal value terms arising out
of the singular kernels v},; and #}, cancel out and hence, in effect, there are no free terms
arising out of the line integrals in eqn (90). Therefore, it is sufficient to consider eqn (106)
without the C.P.V. terms.

Since EOD is a straight line (Fig. 2),

f=a+m (107)
Hence, from eqns (103) and (107) it is clear that
f@+f(B)=0. (108)
Therefore, eqn (106) takes the following form

Is=In ('—”)  f(). (109)
rg

The above mentioned procedure of regularizing the singular integral is explained in the
context of a two-dimensional problem for the v}, , kernels. It should be noted here that the
kernels n, E; 0%, and tf, (= n, E;;,,0% ;) appearing in eqn (110) will have a similar procedure
of regularizing the singular integrals, since the component of the normal », (or n,) are
constant over the straight line EQOD (Fig. 2). Without any loss of generality a similar
procedure could be adopted in the context of three-dimensional problems as well.

1.6.4. Regularization of domain integrals. As seen from eqns (89) and (90) both the

velocity and velocity gradient expressions involve Cauchy principal value integrals in the
domain. For illustrative purposes, let us consider the integral

I}l = J\ E:(;LnDSrﬁ(xM)vﬁ,ik(xm’ ém) dQs (1 10)
Q

we may write v}, 5 (for two-dimensional problems) as:

¥ o)
Ok = 1 (11

Here, r is the distance between the source point and field point. @ is the angle made by the
line connecting the source and field points with the x-axis. Due to the inherent property of
¥(#) it could be seen that

2n
L P(0)do = 0. (112)
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Fig. 3. Numerical evaluation of singular domain integral when source point is in the interior.

As in Fig. 3, let us consider a set of neighboring elements such that the source point is
located at O. This scenario could be considered as a general situation when the source point
lies in the interior. Introducing shape functions into eqn (110) and extracting out the
singularity (procedure adopted, is similar to the case of line integrals [eqn (102)]), the
resulting singular integral would become

J2 = J‘ v}“p.ik dg (113)
Q

Integrating v} ; in all the neighboring elements (Fig. 3) of the source point, eqn (113) turns
out to be

=1 r

n PRE
= limj J \F(zg)rdrdG. (114)
0 [

e 0 ¥

Here R(0) is defined in Fig. 3. Making use of the property of the functional in eqn (112)
we could reduce the above mentioned integral into a regular integral as follows

T, =f"~y(a)1n|R(9)|d0. (115)

Let us next consider the scenario when the source point is on a smooth part of the boundary
(Fig. 4). Introducing shape functions and extracting out the singularity in eqn (110), the
singular integral turns out to be

J3 = J‘ U}';,,gkdg. (]16)
Qg +05

Applying the divergence theorem to the non-singular region (Qg +Qg, —¢) (Fig. 4) we have

J;= lin%[J noh . dF+f n?v}'j,’kdI"—G-J‘v,",‘,,k,-ds]
L nd r ¢ £
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Fig. 4. Numerical evaluation of singular domain integral when source point is on a smooth part of
the boundary.

Upon further analysis it is clear that J, gives rise to a Cauchy principal value line integral,
which would then be evaluated by a similar procedure discussed for line integrals in the
previous section. J; gives rise to free terms arising out of the singular integrals in the
domain, which were already taken into consideration in eqn (90) and taking the appropriate
limiting values J4 can be shown to be zero.

1.6.5. Numerical results and discussion. The problem of a thick cylinder under prescribed
internal radial velocity is considered for illustrative purposes. The dimensions, material
properties, and boundary conditions are given in Fig. 5(a). Since the problem is symmetric
about the angular direction, a 20° section [Fig. 5(b)] is considered for convenience, with
appropriate boundary conditions. Three different meshes (of progressive mesh refinement)
were considered (Fig. 6) for the analysis. A small deformation analysis (up to 1% radial

(a)
Rl =5mm
RZ =10 mm
I
E = 6.8 GPa (= 7000 kgf/mm?)
v = 0.49
Gy = E/700
H' = E/70
(b)
y
) vr ~
<

7/

Fig. 5. Expansion of a thick cylinder under prescribed internal velocity.
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(2) Mesh 2 12 B.E. and 8 D.E.

1 C'
A B

D

(3) Mesh3 18 B.E. and 18 D.E.

Fig. 6. Boundary and domain mesh discretizations.

expansion at the inner radius) was considered as a first step to ascertain the nature of
convergence and accuracy of both formulations. The solutions obtained by using the field-
boundary element method are compared with those designated as direct solution. The direct
solutions were obtained by direct step-by-step integrations of the kinematic quantities
and the elastoplastic constitutive equation, assuming the material to be incompressible
(Poisson’s ratio is set to be 0.5). As seen in Figs 7, 8 and 9, the present formulation gives
accurate results, even with a coarse mesh. As for the standard formulation the results
progressively improve as the mesh is refined.

Next, a large deformation analysis was performed with the same mesh discretizations
given in Fig. 8. Radial deformations up to 30% were considered. As seen in Fig. 10, the
present method gave somewhat acceptable results when the standard formulation failed to
even generate results due to numerical degradation for Mesh 1. The results for the sub-
sequent meshes improve with mesh refinement (Figs 11 and 12). In ali cases considered, the
present method yields more accurate results than the standard formulation. The present
method, based on a direct integral representation of velocity gradients, which are of the
nonhyper-singular type at the boundary, leads to much better numerical results for bound-
ary stress rates than the conventional method where in the integral representations for
velocities is differentiated to obtain deformation rates and stress-rates. This improvement
in numerical accuracy of the present method over the conventional method could be
attributed to the two tier system of evaluation of velocity gradients in the conventional
methods.



Finite/small strain elastoplasticity 1757

1.0
el oy oo, A,
‘°>' 4
B o5t 4
! = = = Direct solution
iﬂ ©  Present method
1 A Conventional method
¥
t
! |
[} 0.005 0.01
ARIIRI

Fig. 7. Pressure-radial displacement curve. (Mesh 1, small deformation analysis).
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Fig. 8. Pressure-radial displacement curve. (Mesh 2, small deformation analysis).
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05— 1 = = = Direct solution
d, 0  Present method
? A Conventional method
[
H
F
i |
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Fig. 9. Pressure-radial displacement curve. (Mesh 3, small deformation analysis).

2. A FULL TANGENT STIFFNESS FIELD-BOUNDARY ELEMENT FORMULATION FOR
GEOMETRIC AND MATERIAL NON-LINEAR PROBLEMS OF SOLID MECHANICS

The analysis of the field-boundary element method for geometric and material non-
linear problems in solid mechanics is generally carried out by an incremental algorithm,
where the solution methodology employed is first to obtain velocities (or displacement
increments) through an integral relationship. The velocity gradients on the boundary are
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Fig. 10. Pressure-radial displacement curve. (Mesh 1. large deformation analysis).
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Fig. 11. Pressure-radial displacement curve. (Mesh 2, large deformation analysis).
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T = = = Direct solution
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Fig. 12. Pressure-radial displacement curve. (Mesh 3, large deformation analysis).

then obtained through an integral relationship or a boundary stress—strain-rate (see the
previous section) algorithm. Once the boundary variables are completely determined, the
velocities and velocity gradients at the interior are evaluated by taking the source point in
their respective integral equations to the desired interior location. Such an initial strain
iteration algorithm is, in general, insensitive to the initial stress velocity gradient coupling
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terms (in the domain integrals), which play a dominant role in problems which involve
bifurcation phenomena (buckling, diffused necking, etc.) in its solution path. Hence, the
convergence may be unacceptably slow or the bifurcation phenomena may be completely
ignored when initial strain type iteration methods were to be employed to solve such
problems.

The initial stress velocity gradient coupling terms (i.e. 74,;v; , terms) need to be properly
accounted for in the calculation of velocities (or displacement increments) for problems
which involve bifurcation phenomena. For this purpose, a full tangent stiffness field-
boundary element formulation is presented. Unlike in the initial strain approach, in the full
tangent stiffness approach, the velocity field in the entire domain of the body is assumed as
a primary variable and the velocity gradients are expressed through the differentiated shape
functions and nodal velocities in the domain elements. Hence a system of equations involving
all non-linear effects in terms of velocities in the form of a tangent stiffness matrix is
obtained. In this section, a tangent stiffness field-boundary element formulation is presented
for elastoplastic solids undergoing large strains. A generalized mid-point radial return
algorithm is used for determining the objective increments of stress from the computed
velocity gradients. Moreover, a mid-point evaluation of the generalized Jaumann integral
is used to determine the material increments of stress. The constitutive equation employed
(the one chosen is for illustrative purposes only) for the analysis is based on an endochronic
model of combined isotropic/kinematic hardening finite plasticity using the concepts of a
material director triad and the associated plastic spin. The problem of diffused necking
instability of a plate subjected to uniform tension is analyzed using the initial strain and
the full tangent stiffness field-boundary element algorithms. Both initially perfect plates, as
well as those containing initial imperfections, are analysed. The superiority of the full
tangent stiffness algorithm, in capturing the bifurcation phenomena is demonstrated when
the plastic instabilities are analysed.

2.1. Field-boundary element equation formulation

Although the integral equation representation for the velocity in finite strain elasto-
plasticity has previously been presented, the nature of the integral equation in such a case
is discussed here. The integral representation for the velocity v, is written as,

Cpqvq(ém) = J;Q {t.jvj’l;(xma ém) - tj’l;(xm’ ém)vj} d (aQ) + L b'jv}';;(xma ém) dQ

+L {EjuDG+ (W —WE) — (Wi — Wit + 0t 0k (X, £,) dQ. (118)

Here, when ¢, is a smooth boundary point (£,,€ 6Q smooth), C,, = 3,, and when ¢, is an

interior point (£,,€Q), C,, = 6,,. The nature of the integral equation (118) is examined as
follows. The first term on the right-hand side of eqn (118), involving only a boundary
integral, corresponds to the linear elastic behavior of the material in its current state. The
second term, involving a domain integral, accounts for the body forces, but still corresponds
to linear elastic behavior in the current state. The third term on the right-hand side of (118),
involving a domain integral, contains the crux of the finite strain elastic—plastic problem :
(i) the term E,,, D}, accounts for the effects of plastic strain-rate, (i) the terms such as
T4 W, etc. account for the effects of plastic spin, and (iii) the term v, ,7,; accounts for the
coupling for initial stresses in the current configuration with the additional deformation
from the current configuration (this term plays a dominant role in problems of buckling,
instability, etc.). If only the first term on the right-hand side is used in any discretization
process, and the domain integral terms are used only in an iterative process, one is led to
the so-called “initial strain” iteration approach, based on the so-called “linear elastic
stiffness matrix”. Such an iterative technique is shown in the present section, to fail in the
case of plastic instability problems. If all the terms on the right-hand side of eqn (118) are
simultaneously used in a discretization process, one is led to the so-called ““full tangent
stiffness” method. It is also seen that this tangent stiffness method involves trial functions
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v; not only at the boundary dQ but also in the domain Q. These concepts of “initial strain”
and “tangent stiffness” field-boundary element methods were discussed by Atluri (1984).
The v}, f and v}, ; kernels for the case of two-dimensional plane strain are defined as
follows :

yi=xi—& r=Jx—E&)(x—&)
1
Uh (X, ) = 8l —v) {(3_4‘,) In ( )5,,,+ y,y,,}

=1 e YiVp
(xma ém) 47[(1—) [ {(1 2v )51,; +2 }

—(I—ZV)(—n —%n,,)}

ol - 7J N I AL
0 i(Xms &) = Sv(1— ){ (3—4dv)~— 6,,,+<5 +5,/r> 2 R (119)

Here, n, are the components of the unit outward normal to the boundary at x,,, and u and
v are the shear modulus and the Poisson’s ratio, respectively. It is seen that the test functions
v} and 3 remain unchanged during the entire elastic—plastic deformation path, and cor-
respond to the initial elastic state of the solid. Further, v} remains symmetric under i - p
interchange, while ¢} has a skew-symmetric component under i — p interchange. It is seen
that if the material is incompressible even in its initial elastic state (v = J), the kernel ¢} in
fact becomes simpler in as much as its skew-symmetric part tends to zero. Also, as plasth
flow fully develops, the rate of deformation is nearly incompressible, i.e. v; satisfy the
condition that v;; = 0. From eqn (118) it can be examined that this potential constraint
condition on v; does not pose any “locking™ problems. This is not the case in symmetric
Galerkin-type finite element formulations, wherein, in a pure displacement approach for
finite strain plasticity, the appropriate functionals (and weak forms) involve terms of the
type (4v;;v, ;) where A is the bulk modulus [see Atluri (1979, 1980)]. For a typical material,
the magnitude of the elastic moduli, E;;, in eqn (118), is expected to be much larger than
that of 7,; (about 2 orders of magnitude). This difference is not as severe as that between
El;y and 4, as in the finite element formulation. This is the primary reason as to why
“locking” does not occur in the field-boundary element method. However, the term 1,0, ,
plays a central role in eqn (118), in altering the stiffness of the structure at bifurcation.

2.2. Numerical implementation of a full tangent stiffness field-boundary element method

In the ““initial strain” type field-boundary element method, the velocities and boundary
traction rates are solved first through an integral equation for velocities on the boundary
(i.e. by discretizing the first term on the right-hand side of eqn (118) only, assuming that
the body forces are zero). Then the velocity gradients on the boundary are solved either by
the boundary stress—strain algorithm or by an integral representation. The velocity and
velocity gradients in the interior are solved next by integral representations. Then, the rate
of plastic strain and other material parameters are determined. An iterative initial strain
type algorithm is carried out till all the field parameters converge. Such an algorithm is'not
very sensitive to the initial stress velocity gradient coupling (i.e. the 14;v;,) term and will
not be suitable for problems involving bifurcation phenomena.

To avoid such a predicament, in the “tangent stiffness” field-boundary element method,
we assume the velocity field as a primary variable not only on the boundary but also in the
interior of the body. The velocity gradients can be expressed by differentiating the shape
functions associated with the nodal velocities in the interior elements. Thus, all material
and geometric non-linear effects are directly accounted for in the field-boundary integral
equation for velocities throughout the domain. Furthermore, a tangent stiffness matrix can
be obtained with known or unknown surface traction rates, as well as velocities through-
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out the domain. [See Banerjee and Reveendra (1987), for an analogous method in small
strain plasticity.]

In the following subsections, numerical implementations of the integral equations for
the present full tangent stiffness field-boundary element method are discussed for a two-
dimensional plane strain case.

2.2.1. Boundary integrals. Three-noded quadratic isoparametric boundary elements
are used to discretize the surface of the body. Let N¥(/ =1,2,3) be a shape function
associated with the Ith nodal point in a boundary element. Let vF and /(I =1,2,3) be a
nodal velocity vector and traction vector at the Ith nodal point in a boundary element.
Thus, the boundary integral in eqn (118) is given by the following discretization

NBE[ 3
j (v}‘,‘,fj—t}';,)d((?Q)= Z [Z {tllf va},‘,d(@QE)—v;f th}'l‘,d(@QE)}:l (120)
o0 1 aQ; 0,

iB=1L1I=
where, NBE is the total number of boundary elements.

2.2.2. Domain integrals. Eight-noded isoparametric elements are used here. Stress
components, plastic strain, and plastic spin evolution equations are evaluated at four points
(sampling points) in each domain element (see Fig. 13). Thus, the stress components, plastic
strain, and plastic spin evolution equations are interpolated to any other location from their
sampling points, by using the Lagrange interpolation functions. Let N/ (I = 1, 2, 3, 4) be
the Lagrange interpolation function associated with the /th stress point in a domain element.
Then,

Cijkl(f, n = Z Nl(é, W)Cijkl(fl, 1)

(& m = Y N mw(Enn), (121)

=1

where, C,;;, represents the tensor in the plastic strain evolution equation

1
P _ —
Dij = ijkIDk[s Cijk[ = ANiijl-

C

Hence, the stress components and plastic strain evolution equations could be expressed in

[ —

&, ny) = (=05, -0.5)
(g np) = (0.5, 0.5)
(€5, M) = (0.5, -0.5)
(&4 My = (0.5, 0.5)

Fig. 13. Eight-noded isoparametric element used for volume discretization.
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this manner everywhere in the domain. Also, by using the shape functions N,
(I=1,2,...,8) of eight-noded isoparametric elements, the velocity and the velocity gradi-
ents can be expressed as follows

8
v = IZI NPE e, n)

& ¢ (aé ON? oy ONP
=2 \ax a8 Tax oy ot (122)

0x; =1
The domain integral in eqn (118) is therefore expressed by the following expressions
(in the absence of body force)

DI = L {EjuDii+ (W, — W/ff) — (Wi — W:Z)Tkj 0,474 U, AQ
= L As_;;(zi’fc.sfz’;ﬁ;,i dQ

NDE {8 4
= Z {Z z Aijkl(fh nove(&r 1))

D=1 \U=1J=1

. o ON? oy 6Nf’) . }
XLENJ(f, 7’)(5;1 oz +6—x,‘57—7w v, dQ;

NDE 8
= {Z Kot (s m)}, (123)

ID=1 U=1

where, 4,;,, {in the absence of plastic spin, for simplicity), is writtent as

1 .
Aijid = Eijmn e NmnNkI + %‘rx‘mé‘/’n(émkénl - 5nk5mi) - %éin(énkéml - omkém’)rmj + 5ik¢1js (1 24)
C

where, NDE is the total number of domain elements, K}, is termed the domain element
stiffness matrix for the source point ¢. It is important to note that, unless the geometry is
updated, we need not recompute domain integrals, because the initial stress and the plastic
strain evolution equation are given pointwise, outside of the integral [eqn (123)].

2.2.3. Matrix formulation. A system of linear equations can be obtained through the
discretized equations [eqns (120) and (123)] given in the previous section. Using the process
of collocation, and by taking each nodal point to be a source point (£,,), a sufficient number
of linear equations is generated. These are shown in matrix form as,

[T*){e} = [UM{7). (125)

Let N be the total number of nodal points (both on the boundary and in the interior), and
let M be the total number of boundary nodal points only. Then {v} is the vector of nodal
velocities (N x 1), and {¢} is the vector of nodal tractions (M x 1). [T*] and [U*] are the
coefficient matrices, which depend on the initial stresses, etc. [see eqns (120) and (123)]. To
solve for unknown nodal values, known and unknown variables are rearranged appro-
priately such that, one is led to a system of equations

[KH{x} = {»} (126)

+ Here we consider only the case of isotropic hardening, for simplicity, and without loss of any generality.



Finitejsmall strain elastoplasticity 1763

where, [K] is the tangent stiffness matrix, and {x} and {y} are the unknown and the load
vector respectively. The unknown vector is obtained by,

x} =1K1"{»h (127)

2.2.4. Numerical quadrature scheme. Since isoparametric elements are considered,
closed form evaluation of the integrals in eqn (118) is not possible. Hence, numerical
quadrature schemes which accurately evaluate both boundary and domain integrals of eqn
(118) are presented below. As for the boundary integrals, the 10 Gauss point quadrature
formula is employed for all non-singular cases, and the logarithmic weighted 7 Gauss point
formula is used for logarithmic singular cases [see Stroud {1966)]. The 1/r singular integral
associated with the Cauchy principal value is evaluated by the use of the rigid body modes.

The kernel functions v}, ; that are present in the domain integral have the structure
(1/r)yf(cos 8, sin 6). Here, r is the distance between a field point x,, and a source point &,
and @ is the angle made by the line joining x,, and ¢,, with the x, axis

(9 = tan"' f-zv_cz).
xi =&

When the field point falls within a set of field elements immediately surrounding the source
point, the (1/r) singularity in the integrand is cancelled with the {r dr df/) term of the
Jacobian and mapping the elements appropriately. On the other hand, the f(cos 6, sin 6)
part is considered to have steeper variation than the 1/r part, when the distance between a
source point and a field element is small compared with the element size. Thus, for this
group of field elements, we choose a numerical quadrature based on the maximum angular
variation in a domain element, which is determined as shown in Fig. 14. It is noted that the
non-product formulas [Stroud (1971)], as well as the standard product Gauss formulas, are
employed for the domain integral.

2.3. Solution algorithm

A non-iterative full tangent stiffness method is employed in the analysis of finite strain
elastoplasticity, with the mid-point radial return algorithm and an objective stress integra-
tion scheme. The mid-point radial return algorithm and the objective stress integration
scheme introduced in this section are quite effective for the non-iterative finite strain elastic—
plastic calculation. These algorithms can prevent unreasonably small time increments,
generally required in non-iterative elastic—plastic calculations. Moreover, they can also give
a more accurate solution to the analysis. These algorithms have previously been discussed.

2.4. Numerical example : diffused necking of a tensile plate and discussion

The plastic instability problem of diffuse necking of a tensile bar is analysed as a
numerical example. Here, rectangular elastic—plastic plates are subjected to tensile defor-
mation (in plane strain) with shear frec end conditions, as shown in Figs 15(a,b). Two
different solution techniques are employed here. One is the present full tangent stiffness
method, and the other is an initial strain iteration method. The results obtained by these

Domain element

/N

Source point

Fig. 14. Maximum angular variation in a domain element.
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(a)

d/ d/2

»N

8]
Y /

S NN\

30 Boundary clements
36 Domain clements
139 Nodal points

d/

N

Mesh discretization and boundary conditions
for case 1 (Lo/Ho =4)

Fig. 15(a). Specimens for analyses of diffused necking and their field-boundary element mesh
discretizations (case 1).

(b)

N

d/! a2

DN

| &,
! 24 Boundary elements
| 27 Domain elements
i 106 Nodal points
i

d/2

Mesh discretization and boundary conditions
for case 2 (Ly/H, = 3)

Fig. 15(b). Specimens for analyses of diffused necking and their field-boundary element mesh
discretizations (case 2).
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Table |. Material properties employed to the analysis

Young’s modulus E 6.895 % 10* MPa
Poisson’s ratio v 0.49
Yield stress g 344.75 MPa
One dimensional stress—strain relationship
t=0/E 0 K0y
e=0"/(Eay ™" 020,
N=28§

methods are compared (for the load and the diffused necking bifurcation point) with the
direct analytical method [see Okada et a/l. (1990)]. The boundary value problems shown in
Figs 15(a, b) are considered here. As shown in Fig. 15, the case (1) and the case (2) have
their initial aspect ratios as (H,/L1I,) } and 1, respectively. Shear free displacement boundary
conditions are specified at both ends of tensile plate. Mesh discretizations and boundary
conditions for the field-boundary element analysis are also shown in Fig. 15. From symmetry
considerations, one-fourth of the actual problem is analysed. Material properties used in
the analysis are given in Table 1. A power law hardening elastic-plastic material is con-
sidered here. The analysis is carried out under plane strain conditions. In Figs 16 and 17,
the solutions obtained by an initial strain iteration field-boundary element method are first
presented for the case (1), wherein initial aspect ratio is }. Two different types of tensile
bars are considered here: one has a perfect initial geometry and the other has an initial
geometric imperfection of 1 % in the width of the tensile plate at its mid-length. The solution
for the case without initial imperfections traces over on the fundamental homogeneous

Homogencous deformation path
-._._.gO-.-O-O-.-.-o_._._.. - \\\\\
LS -’ Sneme—
o
:'/
S M B
/
® : B.E.M. solution
M: Maximum load point
2 Lofr B: Bifurcation point
>
]
—~
ol »
Displ incr in each time step
Increment | Deformation Ievel
AL, = 0.001 0.0000 < d/L, < 0.0200
05 I A/L, = 0.003 0.0200 < d/L,, = 0.0500
A/L,=0.01 0.0500 < d/L, < 0.1313
ALy = 0.001 0.1313 < d/L, < 0.1465
A/Ly = 0.0001 0.1465 < d/Ly < 0.1609
A/l = 0.001 0.1609 < d/L,
1 |
0 10 20

Engineering strain (L-Lg)/Ly x 100(%)

Fig. 16. Normalized load—engineering strain curve for the case 1. (Analysed by a conventional initial
strain iteration field-boundary element algorithm, without initial geometric imperfections.)

SAS 31:12/13-4
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Homogeneous deformation path

"4A—A‘—A_A—A—A_A—A"A_A
1.5 — ‘/ A /A¢A T t
e
4 M B

<8

Convergence failed

P

a : B.E.M. solution
M: Maximum load point
;E; Lo B: Bifurcation point
>~
J
<
iy
3
Displacement increment in cach time step
Increment ] Deformation level
A/L, =0.001 0.0000 < d/L,, = 0.0200
0.5 1 AfLy = 0.003 0.0200 < d/L, < 0.0500
AfL, =0.01 0.0500 < d/L,, < 0.1313
A/L, = 0.001 0.1313 < d/L; < 0.1455
A/Lg = 0.0001 0.1455 <d/L,
| |
[} 10 20

Engineering strain (L-L,)/L, x 100(%)

Fig. 17. Normalized load—engineering strain curve for the case 1. (Analysed by a conventional initial
strain iteration field-boundary element algorithm, with 1% of geometric initial imperfection.)

deformation path obtained by the direct method. In the case with an initial geometric
imperfection, the solution (by the initial strain iteration method) fails to converge after the
bifurcation point. These numerical results clearly indicate that either the plastic instability
is ignored or the convergence fails, when an initial strain type iterative algorithm is used.

The same problem is successfully analysed by using the present full tangent stiffness
field-boundary element approach. The analysis is carried out without any initial geometric
imperfections when using the tangent stiffness method. The normalized load—engineering
strain curves are shown in Figs 18 and 19, for the cases 1 and 2, wherein the initial aspect
ratios are } and 1, respectively. It is seen that the load vs engineering strain curve obtained
by the full tangent stiffness method traces over that of the fundamental homogeneous
deformation path up to the bifurcation point, and drops gradually thereafter. This type
of behavior in the load—engineering strain curves corresponds to the diffused necking
deformation mode. The displacement increment A in each incremental time step is controlled
carefully, as shown in the Figs 16-19, with respect to the level of engineering strain. The
deformed mesh configurations are shown in Figs 20(a, b) at the engineering strains of 15.3%
and 20.3%, respectively, for the case 1 (i.e. of initial aspect ratio ). It is seen that the
deformation is homogeneous up to the bifurcation point (engineering strain 15.3%), and
diffused necking develops thereafter. The deformed mesh configurations at the engineering
strains 17.2% and 20.7% are shown in Figs 21(a, b), for case 2 (i.e. of initial aspect ratio
1). The same trend is observed in the solution for case 2 (engineering strain at the bifurcation
point is 17.1%). A further discussion of the analysis (by the full tangent stiffness method)
is illustrated with the distributions of relative rate of equivalent plastic strain and equivalent
plastic strain. The relative rate of plastic strain £} is defined by,
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Homogeneous deformation path
s & o _8 ..._._.
o,
1.5 ot . Py
1 *
o .
'./ o.
,‘ M B
i
4 ® : B.EM. solutien
M: Maximum load point
o Rifarearinn o
% B: Bifurcation point
s
= e
Displacement increment in each time step
increment | Deformation level
AfL, = 0.001 0.0000 < d/L, = 0.0200
05 AfLy = 0.003 0.0200 < d/L,, < 0.0500
A/L, = 0.01 0.0500 < d/Ly < 0.1313
ALy =0.001 0.1313 < d/L, = 0.1435
A/L, = 0.0001 0.1455 < d/L; = 0.1483
AfLgy = 0.001 0.1483 <d/L,
N ]
0 10 20

Engineering strain (L-Ly)/Ly x 100(%)

Fig. 18. Normalized load-engineering strain curve for the case 1 (Analysed by present full tangent
stiffness field-boundary element approach.)

é’?
;P = - 128
&R 2 ] (128)

J3!

& = \/g(é{?éé') v, (129)

and

Here, &7 is the rate of plastic strain, / is the current length of the plate and [ is its time
derivative. When a rigid plastic plate is undergoing homogeneous stretching under plane
strain conditions, the relative rate of equivalent plastic strain £f is always equal to one. The
equivalent plastic strain is defined as

£ = JUele)", (130)

where, £/, is plastic strain. The distribution of relative rate of plastic strain at the engineering
strains 14.5%, 15.3%, 17.8% and 19.3% are shown in Figs 22(a), (b), {¢) and (d), for the
case 1. These figures show the development of the diffused necking deformation mode and
the elastic unloading zone (4 = 0) in the plate. At an engineering strain of 19.3% (as the
deformation proceeds) the distribution of £” seems to concentrate at the portion of necking
(Fig. 23). Moreover, éf and ” at the engineering strain of 19.3% [Figs 22(c) and 23] seem
to indicate high concentration of plastic deformation around a 50° section across the
diffused necking portion of tensile plate. This behavior corresponds to a shear band type
deformation. The same trend is seen in the solution for the case 2 whose initial aspect ratio
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Homogeneous deformation path
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] |
0 10 20
Engineering strain (L-L)/L, x 100(%)

Fig. 19. Normalized load—engineering strain curve for the case 2 (Analysed by present full tangent
stiffness field-boundary element approach.)

is 1, as shown in Figs 24(a), (b) and (c) wherein the distribution of &7 is illustrated at the
engineering strains 16.6%, 17.2% and 20.7%. In Fig. 25, the distribution of &” at the
engineering strain 20.7% is shown. When the finite element method was used for a problem
of this class [see, for instance, McMeeking and Rice (1975)], geometric imperfections were
often introduced into the problem to lead the analysis automatically into a diffused necking
mode of deformation. When the initial imperfections are considered to be absent, a super-
position of a small magnitude of the necking mode (with elastic unloading at the top of the
bar) onto the homogeneous deformation mode, we found to be necessary when the finite
element method is used in Murakawa and Atluri (1980), to lead the tensile bar into the
region of diffuse necking. But, in the present full tangent stiffness field-boundary element
analysis, the initial geometric imperfection is not introduced into the problem. Since all the
effects of non-linearities in the problem are properly and directly accounted for the cal-
culation of the velocity (displacement) field, the present full tangent stiffness field-boundary
element analysis is quite sensitive to numerical instabilities. The diffused necking instability
contained in the problem is propagated by the effect of a small amount of numerical error
produced in numerical integrations, which makes the present algorithm switch its solution
path from the fundamental homogeneous mode to the diffused necking mode by itself. The
analysis is quite sensitive to the time increment in the incremental elastic—plastic analysis,
when the numerical instabilities are propagating in the problem. Hence, this necessitates
the time increment in each time step to be controlled very carefully around the bifurcation

11t is well known that the determinant of the tangent stiffness matrix changes its sign when the deformation
path passes through the bifurcation necking point. Thus, the determinant of the tangent stiffness is carefully
maintained at each increment. If a change in its sign is detected the size of the increment is reduced, and then
carefully controlled, to precisely define the bifurcation point, as well as the post-bifurcation necking solution.
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Fig. 22. Distributions of the relative rate of equivalent plastic strain for the case 1, at the engineering
strain (a) 14.5%, (b) 15.3%, (c) 17.8% and (d) 19.3%.
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Fig. 23. Distribution of equivalent plastic strain for the case 1, at the engineering strain 19.3%.
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Fig. 24. Distributions of the relative rate of equivalent plastic strain for the case 2, at the engineering
strain (a) 16.6%, (b) 17.2%, (c) 20.7%.

Fig. 25. Distribution of equivalent plastic strain for the case 2, at the engineering strain 20.7%.
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point. If the time increment is too large, then the analysis would ignore the numerical
instabilities around the bifurcation point, and trace over the fundamental homogeneous
deformation path.

As described above, the present full tangent stiffness field-boundary element method
is superior to the conventional approach using an initial strain iteration algorithm, in
capturing plastic instabilities. Moreover, as shown in this section, the present approach is
capable not only of capturing the plastic instability but also of analysing the post bifurcation
behavior. The solution algorithm presented here is based on a full tangent stiffness field-
boundary element method where the velocity field both inside and on the boundary of the
body is taken as the primary variable. Such a scheme takes the initial stress velocity gradient
coupling terms accurately into account (unlike the conventional initial strain type algo-
rithm). This is of paramount importance to these geometric and material non-linear insta-
bility problems. It has also been shown that such an algorithm is also capable of analysing
the post-bifurcation behavior.
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